Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
J Prosthet Dent ; 131(4): 707.e1-707.e8, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38331670

ABSTRACT

STATEMENT OF PROBLEM: Three-dimensional (3D) printing technology has gained popularity in producing removable partial denture (RPD) frameworks, including direct 3D printing of the metal framework and framework printing using castable resin, subsequently cast and processed. However, whether the technology is sufficiently accurate and precise to supersede traditional methods is unclear. PURPOSE: The purpose of this in vitro study was to determine the accuracy and precision of 2 different methods in the fabrication of RPD frameworks, including 3D printing by selective laser melting (SLM) and digital light processing (DLP). MATERIAL AND METHODS: Maxillary casts were digitized to design RPD frameworks. Thereby, 8 frameworks were produced for each group. The SLM group underwent a thermal finishing process after printing. In the DLP group, castable resin was printed but not cast. All frameworks were scanned to generate digital files, which were then compared with the original design using a metrology software program and manual measurements. Statistical analysis was executed using the t-test for independent specimens (α=.05) and by comparing heatmaps of the overlaid meshes. RESULTS: The analysis of the frameworks indicated minor deviations across all specimens. Regarding accuracy, there were no significant differences between the groups (P=.986). The SLM frameworks demonstrated greater precision, with absolute deviation values of 0.13 mm compared with 0.17 mm in the DLP group (P<.001). CONCLUSIONS: The findings underscored a high consistency between the 2 printing techniques, demonstrating a sufficiently advanced production process to yield predictable results. While the accuracy of both techniques was at a comparably high level and did not differ significantly, the SLM technique delivered RPDs with higher precision.


Subject(s)
Computer-Aided Design , Denture, Partial, Removable , Printing, Three-Dimensional , Lasers , Maxilla
2.
Colloids Surf B Biointerfaces ; 235: 113791, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38335769

ABSTRACT

Magnetic nanoparticles (MNPs) modified with tannic acid (TA) have shown remarkable success as an antioxidant and antimicrobial therapeutic agent. Herein, we report a synthetic procedure for the preparation of silica-coated MNPs modified with N-acetylcysteine-modified chitosan and TA. This was achieved by free-radical grafting of NAC onto chitosan (CS), a layer-by-layer technique for modifying negatively charged MNP@SiO2 nanoparticles with positively charged CS-NAC, and crosslinking CS with TA. The antioxidant and metabolic effects of MNP@SiO2-CS-NAC and MNP@SiO2-CS-NAC-TA nanoparticles were tested in a model of prediabetic rats with hepatic steatosis, the hereditary hypertriglyceridemic rats (HHTg). The particles exhibited significant antioxidant properties in the liver, increasing the activity of the antioxidant enzymes superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx), decreasing the concentration of the lipoperoxidation product malondialdehyde (MDA), and improving the antioxidant status determined as the ratio of reduced to oxidized glutathione; in particular, TA increased some antioxidant parameters. MNPs carrying antioxidants such as NAC and TA could thus represent a promising therapeutic agent for the treatment of various diseases accompanied by increased oxidative stress.


Subject(s)
Chitosan , Magnetite Nanoparticles , Polyphenols , Prediabetic State , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Acetylcysteine/pharmacology , Chitosan/pharmacology , Prediabetic State/metabolism , Silicon Dioxide/pharmacology , Glutathione/metabolism , Rats, Wistar , Oxidative Stress , Liver , Superoxide Dismutase/metabolism
3.
Nanomaterials (Basel) ; 14(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38392744

ABSTRACT

In the fight against antibiotic resistance, which is rising to dangerously high levels worldwide, new strategies based on antibiotic-conjugated biocompatible polymers bound to magnetic nanoparticles that allow the drug to be manipulated and delivered to a specific target are being proposed. Here, we report the direct surface engineering of nontoxic iron oxide nanoparticles (IONs) using biocompatible dextran (Dex) covalently linked to ß-cyclodextrin (ß-CD) with the ability to form non-covalent complexes with silver-sulfamethazine (SMT-Ag). To achieve a good interaction of ß-CD-modified dextran with the surface of the nanoparticles, it was functionalized with diphosphonic acid (DPA) that provides strong binding to Fe atoms. The synthesized polymers and nanoparticles were characterized by various methods, such as nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopies, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), atomic absorption spectroscopy (AAS), dynamic light scattering (DLS), etc. The resulting magnetic ION@DPA-Dex-ß-CD-SMT-Ag nanoparticles were colloidally stable in water and contained 24 µg of antibiotic per mg of the particles. When tested for in vitro antimicrobial activity on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungi (yeast Candida albicans and mold Aspergillus niger), the particles showed promising potential.

4.
Nanoscale Adv ; 5(24): 6979-6989, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38059042

ABSTRACT

In this report, upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs) were synthesized by high-temperature coprecipitation of lanthanide chlorides and encapsulated in poly(glycerol monomethacrylate) (PGMMA). The UCNP surface was first treated with hydrophobic penta(propylene glycol) methacrylate phosphate (SIPO) to improve colloidal stability and enable encapsulation by reversible addition-fragmentation chain transfer miniemulsion polymerization (RAFT) of glycidyl methacrylate (GMA) in water, followed by its hydrolysis. The resulting UCNP-containing PGMMA particles (UCNP@PGMMA), hundreds of nanometers in diameter, were thoroughly characterized by transmission (TEM) and scanning electron microscopy (SEM), dynamic light scattering (DLS), infrared (FTIR) and fluorescence emission spectroscopy, and thermogravimetric analysis (TGA) in terms of particle morphology, size, polydispersity, luminescence, and composition. The morphology, typically raspberry-like, depended on the GMA/UCNP weight ratio. Coating of the UCNPs with hydrophilic PGMMA provided the UCNPs with antifouling properties while enhancing chemical stability and reducing the cytotoxicity of neat UCNPs to a non-toxic level. In addition, it will allow the binding of molecules such as photosensitizers, thus expanding the possibilities for use in various biomedical applications.

5.
Pharmaceutics ; 15(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38140035

ABSTRACT

Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case using poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and temoporfin (THPC) photosensitizer to ensure the colloidal and chemical stability of the particles in aqueous media and the formation of singlet oxygen after NIR irradiation, respectively. Codoping of Fe2+, Yb3+, and Er3+ ions in the NaYF4 host induced upconversion emission of particles in the red region, which is dominant for achieving direct excitation of THPC. Novel monodisperse PMVEMA-coated upconversion NaYF4:Yb3+,Er3+,Fe2+ nanoparticles (UCNPs) with chemically bonded THPC were found to efficiently transfer energy and generate singlet oxygen. The cytotoxicity of the UCNPs was determined in the human pancreatic adenocarcinoma cell lines Capan-2, PANC-01, and PA-TU-8902. In vitro data demonstrated enhanced uptake of UCNP@PMVEMA-THPC particles by rat INS-1E insulinoma cells, followed by significant cell destruction after excitation with a 980 nm laser. Intratumoral administration of these nanoconjugates into a mouse model of human pancreatic adenocarcinoma caused extensive necrosis at the tumor site, followed by tumor suppression after NIR-induced PDT. In vitro and in vivo results thus suggest that this nanoconjugate is a promising candidate for NIR-induced PDT of cancer.

6.
Front Chem ; 11: 1207984, 2023.
Article in English | MEDLINE | ID: mdl-37426333

ABSTRACT

Large (120 nm) hexagonal NaYF4:Yb, Er nanoparticles (UCNPs) were synthesized by high-temperature coprecipitation method and coated with poly(ethylene glycol)-alendronate (PEG-Ale), poly (N,N-dimethylacrylamide-co-2-aminoethylacrylamide)-alendronate (PDMA-Ale) or poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The colloidal stability of polymer-coated UCNPs in water, PBS and DMEM medium was investigated by dynamic light scattering; UCNP@PMVEMA particles showed the best stability in PBS. Dissolution of the particles in water, PBS, DMEM and artificial lysosomal fluid (ALF) determined by potentiometric measurements showed that all particles were relatively chemically stable in DMEM. The UCNP@Ale-PEG and UCNP@Ale-PDMA particles were the least soluble in water and ALF, while the UCNP@PMVEMA particles were the most chemically stable in PBS. Green fluorescence of FITC-Ale-modified UCNPs was observed inside the cells, demonstrating successful internalization of particles into cells. The highest uptake was observed for neat UCNPs, followed by UCNP@Ale-PDMA and UCNP@PMVEMA. Viability of C6 cells and rat mesenchymal stem cells (rMSCs) growing in the presence of UCNPs was monitored by Alamar Blue assay. Culturing with UCNPs for 24 h did not affect cell viability. Prolonged incubation with particles for 72 h reduced cell viability to 40%-85% depending on the type of coating and nanoparticle concentration. The greatest decrease in cell viability was observed in cells cultured with neat UCNPs and UCNP@PMVEMA particles. Thanks to high upconversion luminescence, high cellular uptake and low toxicity, PDMA-coated hexagonal UCNPs may find future applications in cancer therapy.

7.
Nanomaterials (Basel) ; 13(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37177080

ABSTRACT

In this report, we synthesized hexagonal NaYF4:Yb,Er upconverting nanoparticles (UCNPs) of 171 nm in size with a narrow particle size distribution. To address their colloidal stabi-lity in aqueous media and to incorporate a photosensitizer that can produce reactive singlet oxygen (1O2) to kill tumor cells, UCNPs were conjugated with 6-bromohexanoic acid-functionalized Rose Bengal (RB) and coated with PEG-alendronate (PEG-Ale). The particles were thoroughly characterized by transmission electron microscopy, dynamic light scattering, ATR FTIR, X-ray photoelectron spectroscopy, thermogravimetric analysis, and spectrofluorometry, and 1O2 formation was detected using a 9,10-diphenylanthracene spectrophotometric probe. Cytotoxicity determination on rat mesenchymal stem cells by using the MTT assay showed that neutralization of the large positive surface charge of neat UCNPs with PEG-Ale and the bound RB sensitizer significantly reduced the concentration-dependent cytotoxicity. The presented strategy shows great potential for the use of these particles as a novel agent for the photodynamic therapy of tumors.

8.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769046

ABSTRACT

Upconverting nanoparticles (UCNPs) are of particular interest in nanomedicine for in vivo deep-tissue optical cancer bioimaging due to their efficient cellular uptake dependent on polymer coating. In this study, particles, ca. 25 nm in diameter, were prepared by a high-temperature coprecipitation of lanthanide chlorides. To ensure optimal dispersion of UCNPs in aqueous milieu, they were coated with three different polymers containing reactive groups, i.e., poly(ethylene glycol)-alendronate (PEG-Ale), poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide)-alendronate (PDMA-Ale), and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). All the particles were characterized by TEM, DLS, FTIR, and spectrofluorometer to determine the morphology, hydrodynamic size and ξ-potential, composition, and upconversion luminescence. The degradability/dissolution of UCNPs in water, PBS, DMEM, or artificial lysosomal fluid (ALF) was evaluated using an ion-selective electrochemical method and UV-Vis spectroscopy. The dissolution that was more pronounced in PBS at elevated temperatures was decelerated by polymer coatings. The dissolution in DMEM was relatively small, but much more pronounced in ALF. PMVEMA with multiple anchoring groups provided better protection against particle dissolution in PBS than PEG-Ale and PDMA-Ale polymers containing only one reactive group. However, the cytotoxicity of the particles depended not only on their ability to rapidly degrade, but also on the type of coating. According to MTT, neat UCNPs and UCNP@PMVEMA were toxic for both rat cells (C6) and rat mesenchymal stem cells (rMSCs), which was in contrast to the UCNP@Ale-PDMA particles that were biocompatible. On the other hand, both the cytotoxicity and uptake of the UCNP@Ale-PEG particles by C6 and rMSCs were low, according to MTT assay and ICP-MS, respectively. This was confirmed by a confocal microscopy, where the neat UCNPs were preferentially internalized by both cell types, followed by the UCNP@PMVEMA, UCNP@Ale-PDMA, and UCNP@Ale-PEG particles. This study provides guidance for the selection of a suitable nanoparticle coating with respect to future biomedical applications where specific behaviors (extracellular deposition vs. cell internalization) are expected.


Subject(s)
Nanoparticles , Polymers , Rats , Animals , Polymers/chemistry , Alendronate , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Water
9.
Life (Basel) ; 12(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36143419

ABSTRACT

High-quality upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs; 26 nm in diameter) based on lanthanides were synthesized by a high-temperature coprecipitation method. The particles were modified by bisphosphonate-terminated poly(ethylene glycol) (PEG) and Rose Bengal (RB) photosensitizer. The particles were thoroughly characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, FTIR, and X-ray photoelectron and upconversion luminescence spectroscopy in terms of morphology, hydrodynamic size, composition, and energy transfer to the photosensitizer. Moreover, the singlet oxygen generation from RB-containing UCNPs was investigated using 9,10-diphenylanthracene probe under 980 nm excitation. The cytotoxicity of UCNPs before and after conjugation with RB was evaluated on highly sensitive rat mesenchymal stem cells (rMSCs) and significant differences were found. Correspondingly, consi-derable variations in viability were revealed between the irradiated and non-irradiated rat glioma cell line (C6) exposed to RB-conjugated UCNPs. While the viability of rMSCs was not affected by the presence of UCNPs themselves, the cancer C6 cells were killed after the irradiation at 980 nm due to the reactive oxygen species (ROS) production, thus suggesting the potential of RB-conjugated PEG-modified UCNPs for applications in photodynamic therapy of cancer.

10.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35458018

ABSTRACT

Coating of nanoparticles with gallates renders them antioxidant and enhances cellular internalization. In this study, (amino)silica magnetic particles modified with tannic acid (TA) and optionally with chitosan (CS) were developed, and their physicochemical properties and antioxidant activity were evaluated. The results demonstrated that the TA-modified aminosilica-coated particles, as well as the silica-coated particles with a double TA layer, exhibited high antioxidant activity, whereas the silica-coated particles with no or only a single TA layer were well-internalized by LN-229 cells. In addition, a magnet placed under the culture plates greatly increased the cellular uptake of all TA-coated magnetic nanoparticles. The coating thus had a considerable impact on nanoparticle-cell interactions and particle internalization. The TA-coated magnetic nanoparticles have great potential as intracellular carriers with preserved antioxidant activity.

11.
ACS Appl Mater Interfaces ; 14(16): 18233-18247, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35416039

ABSTRACT

Novel Yb,Tb,Nd-doped GdF3 and NaGdF4 nanoparticles were synthesized by a coprecipitation method in ethylene glycol (EG) in the presence of the poly(4-styrenesulfonic acid-co-maleic anhydride) stabilizer. The particle size and morphology, crystal structure, and phase change were controlled by adjusting the PSSMA concentration and source of fluoride anions in the reaction. Doping of Yb3+, Tb3+, and Nd3+ ions in the NaGdF4 host nanoparticles induced luminescence under ultraviolet and near-infrared excitation and high relaxivity in magnetic resonance (MR) imaging (MRI). In vitro toxicity of the nanoparticles and their cellular uptake efficiency were determined in model rat pancreatic ß-cells (INS-1E). As the NaGdF4:Yb,Tb,Nd@PSSMA-EG nanoparticles were non-toxic and possessed good luminescence and magnetic properties, they were applicable for in vitro optical and MRI of isolated pancreatic islets in phantoms. The superior contrast was achieved for in vivo T2*-weighted MR images of the islets transplanted under the kidney capsule to mice in preclinical trials.


Subject(s)
Islets of Langerhans , Nanoparticles , Animals , Islets of Langerhans/diagnostic imaging , Luminescence , Magnetic Resonance Imaging/methods , Maleic Anhydrides , Mice , Nanoparticles/chemistry , Rats
12.
Talanta ; 244: 123400, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35395457

ABSTRACT

Surface engineering of upconverting nanoparticles (UCNPs) is crucial for their bioanalytical applications. Here, an antibody specific to cardiac troponin I (cTnI), an important biomarker for acute myocardial infection, was covalently immobilized on the surface of UCNPs to prepare a label for the detection of cTnI biomarker in an upconversion-linked immunoassay (ULISA). Core-shell UCNPs (NaYF4:Yb,Tm@NaYF4) were first coated with poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and then conjugated to antibodies. The morphology (size and uniformity), hydrodynamic diameter, chemical composition, and amount of coating on the of UCNPs, as well as their upconversion luminescence, colloidal stability, and leaching of Y3+ ions into the surrounding media, were determined. The developed ULISA allowed reaching a limit of detection (LOD) of 0.13 ng/ml and 0.25 ng/ml of cTnI in plasma and serum, respectively, which represents 12- and 2-fold improvement to conventional enzyme-linked immunosorbent based on the same immunoreagents.


Subject(s)
Nanoparticles , Troponin I/analysis , Immunoassay/methods , Limit of Detection , Luminescence , Nanoparticles/chemistry
13.
Int J Nanomedicine ; 17: 969-981, 2022.
Article in English | MEDLINE | ID: mdl-35280334

ABSTRACT

Background: Intravascular delivery of nanoparticles for theranostic application permits direct interaction of nanoparticles and vascular cells. Since vascular smooth muscle cells (VSMCs), the major components of the vascular wall, are constantly subjected to mechanical stimulation from hemodynamic influence, we asked whether cyclic strain may modulate internalization of magnetic nanoparticles (MNPs) by cultured VSMCs. Methods: Cyclic strain (1 Hz and 10%) was applied with Flexcell system in cultured VSMCs from rats, with cell-associated MNPs (MNPcell) determined by a colorimetric iron assay. Transmission and scanning electron microscopy were used for morphology studies. Confocal microscopy was used to demonstrate distribution of actin assembly in VSMCs. Results: Incubation of poly(acrylic acid) (PAA)-coated MNPs with VSMCs for 4 h induced microvilli formation and MNP internalization. Application of cyclic strain for 4-12 h significantly reduced MNPcell by up to 65% (p < 0.05), which was associated with blunted microvilli and reduced vesicle size/cell, but not vesicle numbers/cell. Confocal microscopy demonstrated that both cyclic strain and fibronectin coating of the culture plate reduced internalized MNPs, which were co-localized with vinculin. Furthermore, cytochalasin D reduced MNPcell, suggesting a role of actin polymerization in MNP uptake by VSMCs; however, a myosin II ATPase inhibitor, blebbistatin, exhibited no effect. Cyclic strain also attenuated uptake of PAA-MNPs by LN-229 cells and uptake of poly-L-lysine-coated MNPs by VSMCs. Conclusion: In such a dynamic milieu, cyclic strain may impede cellular internalization of nanocarriers, which spares the nanocarriers and augments their delivery to the target site in the lumen of vessels or outside of the circulatory system.


Subject(s)
Myocytes, Smooth Muscle/metabolism , Nanoparticles , Rats , Animals , Biological Transport , Cell Line , Magnetics , Muscle, Smooth, Vascular , Nanoparticles/metabolism , Stress, Mechanical
14.
Nat Protoc ; 17(4): 1028-1072, 2022 04.
Article in English | MEDLINE | ID: mdl-35181766

ABSTRACT

The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.


Subject(s)
Nanoparticles , Neoplasms , Biomarkers, Tumor , Humans , Immunosorbents , Male , Nanoparticles/chemistry , Neoplasms/diagnosis , Polyethylene Glycols/chemistry , Silicon Dioxide/chemistry , Streptavidin
15.
Methods Appl Fluoresc ; 10(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34883469

ABSTRACT

The increasing interest in upconverting nanoparticles (UCNPs) in biodiagnostics and therapy fuels the development of biocompatible UCNPs platforms. UCNPs are typically nanocrystallites of rare-earth fluorides codoped with Yb3+and Er3+or Tm3+. The most studied UCNPs are based on NaYF4but are not chemically stable in water. They dissolve significantly in the presence of phosphates. To prevent any adverse effects on the UCNPs induced by cellular phosphates, the surfaces of UCNPs must be made chemically inert and stable by suitable coatings. We studied the effect of various phosphonate coatings on chemical stability andin vitrocytotoxicity of the Yb3+,Er3+-codoped NaYF4UCNPs in human endothelial cells obtained from cellular line Ea.hy926. Cell viability of endothelial cells was determined using the resazurin-based assay after the short-term (15 min), and long-term (24 h and 48 h) incubations with UCNPs dispersed in cell-culture medium. The coatings were obtained from tertaphosphonic acid (EDTMP), sodium alendronate and poly(ethylene glycol)-neridronate. Regardless of the coating conditions, 1 - 2 nm-thick amorphous surface layers were observed on the UCNPs with transmission electron microscopy. The upconversion fluorescence was measured in the dispersions of all UCNPs. Surafce quenching in aqueous suspensions of the UCNPs was reduced by the coatings. The dissolution degree of the UCNPs was determined from the concentration of dissolved fluoride measured with ion-selective electrode after the ageing of UCNPs in water, physiological buffer (i.e., phosphate-buffered saline-PBS) and cell-culture medium. The phosphonate coatings prepared at 80 °C significantly suppressed the dissolution of UCNPs in PBS while only minor dissolution of bare and coated UCNPs was measured in water and cell-culture medium. The viability of human endothelial cells was significantly reduced when incubated with UCNPs, but it increased with the improved chemical stability of UCNPs by the phosphonate coatings with negligible cytotoxicity when coated with EDTMP at 80 °C.


Subject(s)
Nanoparticles , Organophosphonates , Endothelial Cells , Fluorides , Humans , Organophosphonates/pharmacology , Yttrium
16.
Mater Sci Eng C Mater Biol Appl ; 131: 112500, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34857286

ABSTRACT

Research of degradable hydrogel polymeric materials exhibiting high water content and mechanical properties resembling tissues is crucial not only in drug delivery systems but also in tissue engineering, medical devices, and biomedical-healthcare sensors. Therefore, we newly offer development of hydrogels based on poly(2-hydroxyethyl methacrylate-co-2-(acetylthio) ethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine) [P(HEMA-ATEMA-MPC)] and optimization of their mechanical and in vitro and in vivo degradability. P(HEMA-ATEMA-MPC) hydrogels differed in chemical composition, degree of crosslinking, and starting molar mass of polymers (15, 19, and 30 kDa). Polymer precursors were synthesized by a reversible addition fragmentation chain transfer (RAFT) polymerization using 2-(acetylthio)ethyl methacrylate containing protected thiol groups, which enabled crosslinking and gel formation. Elastic modulus of hydrogels increased with the degree of crosslinking (Slaughter et al., 2009) [1]. In vitro and in vivo controlled degradation was confirmed using glutathione and subcutaneous implantation of hydrogels in rats, respectively. We proved that the hydrogels with higher degree of crosslinking retarded the degradation. Also, albumin, γ-globulin, and fibrinogen adsorption on P(HEMA-ATEMA-MPC) hydrogel surface was tested, to simulate adsorption in living organism. Rat mesenchymal stromal cell adhesion on hydrogels was improved by the presence of RGDS peptide and laminin on the hydrogels. We found that rat mesenchymal stromal cells proliferated better on laminin-coated hydrogels than on RGDS-modified ones.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Animals , Biocompatible Materials/pharmacology , Methacrylates , Polyhydroxyethyl Methacrylate , Rats , Tissue Engineering
17.
Nanoscale ; 13(45): 19023-19037, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34755752

ABSTRACT

Multimodal gadolinium fluoride nanoparticles belong to potential contrast agents useful for bimodal optical fluorescence and magnetic resonance imaging. However, the metallic nature of the nanoparticles, similarly to some paramagnetic iron oxides, might induce allergic and anaphylactic reactions in patients after administration. A reduction of these adverse side effects is a priority for the safe application of the nanoparticles. Herein, we prepared paramagnetic poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA)-stabilized GdF3 nanoparticles with surface modified by Atto 488-labeled poly(styrene-grad-2-dimethylaminoethyl acrylate)-block-poly(2-dimethylaminoethyl acrylate) (PSDA-A488) with reactive amino groups for introduction of an additional imaging (luminescence) modality and possible targeting of anticancer drugs. The saturation magnetization of GdF3@PSSMA particles according to SQUID magnetometry reached 157 Am2 kg-1 at 2 K and magnetic field of 7 T. GdF3@PSSMA-PSDA-A488 nanoparticles were well tolerated by human cervical adenocarcinoma (HeLa), mouse bone marrow-derived mast cells (BMMC), and rat basophilic mast cells (RBL-2H3); the particles also affected cell morphology and protein tyrosine phosphorylation in mast cells. Moreover, the nanoparticles interfered with the activation of mast cells by multivalent antigens and inhibited calcium mobilization and cell degranulation. These findings show that the new multimodal GdF3-based nanoparticles possess properties useful for various imaging methods and might minimize mast cell degranulation incurred after future nanoparticle diagnostic administration.


Subject(s)
Mast Cells , Nanoparticles , Animals , Cell Degranulation , Growth Differentiation Factor 3 , Humans , Mice , Polymers , Rats
18.
Sci Rep ; 11(1): 21373, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725396

ABSTRACT

Upconverting luminescent lanthanide-doped nanoparticles (UCNP) belong to promising new materials that absorb infrared light able to penetrate in the deep tissue level, while emitting photons in the visible or ultraviolet region, which makes them favorable for bioimaging and cell labeling. Here, we have prepared upconverting NaYF4:Yb,Er@NaYF4:Nd core-shell nanoparticles, which were coated with copolymers of N,N-dimethylacrylamide (DMA) and 2-(acryloylamino)-2-methylpropane-1-sulfonic acid (AMPS) or tert-butyl [2-(acryloylamino)ethyl]carbamate (AEC-Boc) with negative or positive charges, respectively. The copolymers were synthesized by a reversible addition-fragmentation chain transfer (RAFT) polymerization, reaching Mn ~ 11 kDa and containing ~ 5 mol% of reactive groups. All copolymers contained bisphosphonate end-groups to be firmly anchored on the surface of NaYF4:Yb,Er@NaYF4:Nd core-shell nanoparticles. To compare properties of polymer coatings, poly(ethylene glycol)-coated and neat UCNP were used as a control. UCNP with various charges were then studied as labels of carcinoma cells, including human hepatocellular carcinoma HepG2, human cervical cancer HeLa, and rat insulinoma INS-1E cells. All the particles proved to be biocompatible (nontoxic); depending on their ξ-potential, the ability to penetrate the cells differed. This ability together with the upconversion luminescence are basic prerequisites for application of particles in photodynamic therapy (PDT) of various tumors, where emission of nanoparticles in visible light range at ~ 650 nm excites photosensitizer.


Subject(s)
Acrylamides/chemistry , Fluorescent Dyes/chemistry , Fluorides/chemistry , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Yttrium/chemistry , HeLa Cells , Hep G2 Cells , Humans , Optical Imaging/methods
19.
Antibiotics (Basel) ; 10(9)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34572658

ABSTRACT

Uniformly sized magnetite nanoparticles (Dn = 16 nm) were prepared by a thermal decomposition of Fe(III) oleate in octadec-1-ene and stabilized by oleic acid. The particles were coated with Sipomer PAM-200 containing both phosphate and methacrylic groups available for the attachment to the iron oxide and at the same time enabling (co)polymerization of 2-(dimethylamino)ethyl methacrylate and/or 2-tert-butylaminoethyl methacrylate at two molar ratios. The poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[2-(dimethylamino)ethyl methacrylate-co-2-tert-butylaminoethyl methacrylate] [P(DMAEMA-TBAEMA)] polymers and the particles were characterized by 1H NMR spectroscopy, size-exclusion chromatography, transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, magnetometry, and ATR FTIR and atomic absorption spectroscopy. The antimicrobial effect of cationic polymer-coated magnetite nanoparticles tested on both Escherichia coli and Staphylococcus aureus bacteria was found to be time- and dose-responsive. The P(DMAEMA-TBAEMA)-coated magnetite particles possessed superior biocidal properties compared to those of P(DMAEMA)-coated one.

20.
Polymers (Basel) ; 13(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199994

ABSTRACT

Magnetic maghemite (γ-Fe2O3) nanoparticles obtained by a coprecipitation of iron chlorides were dispersed in superporous poly(2-hydroxyethyl methacrylate) scaffolds containing continuous pores prepared by the polymerization of 2-hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) in the presence of ammonium oxalate porogen. The scaffolds were thoroughly characterized by scanning electron microscopy (SEM), vibrating sample magnetometry, FTIR spectroscopy, and mechanical testing in terms of chemical composition, magnetization, and mechanical properties. While the SEM microscopy confirmed that the hydrogels contained communicating pores with a length of ≤2 mm and thickness of ≤400 µm, the SEM/EDX microanalysis documented the presence of γ-Fe2O3 nanoparticles in the polymer matrix. The saturation magnetization of the magnetic hydrogel reached 2.04 Am2/kg, which corresponded to 3.7 wt.% of maghemite in the scaffold; the shape of the hysteresis loop and coercivity parameters suggested the superparamagnetic nature of the hydrogel. The highest toughness and compressive modulus were observed with γ-Fe2O3-loaded PHEMA hydrogels. Finally, the cell seeding experiments with the human SAOS-2 cell line showed a rather mediocre cell colonization on the PHEMA-based hydrogel scaffolds; however, the incorporation of γ-Fe2O3 nanoparticles into the hydrogel improved the cell adhesion significantly. This could make this composite a promising material for bone tissue engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...